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PHYSICS GOALS OF MY RESEARCH

§ My research goal is to carry out a comprehensive program of neutrino 
oscillation measurements using Long and Short baseline neutrino 
experiments 
1. Search for Charge-Parity symmetry violation in the leptonic sector
2. Support 1. by reducing systematics in lepton and neutrino 

interaction measurements that are currently dominant systematics 
for the neutrino oscillation measurements 
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SEARCH FOR CP-VIOLATION IN NEUTRINOS

§ CP-symmetry violation has already been found in quark oscillations 
– However, more CP-violation must be observed in order to explain the 

universe’s matter dominance. 
§ CP symmetry violation in neutrinos is our best bet for explaining why matter is 

dominant in the universe
§ What is the value of the Dirac CP-violating phase δCP?

– If ≠ 0 (or 1800), then CP-violation exists
§ Deep Underground Neutrino Experient (DUNE) can discover CP-violation in the 

neutrino sector 
– Therefore I will be focusing on DUNE development 
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INTRODUCTION TO DUNE 
§ The Deep Underground Neutrino Experiment (DUNE) is a future accelerator-

based multi-detector long-baseline neutrino oscillations experiment.

§ Major DUNE goals:
– Neutrino Oscillation Physics (CPV, Mass hierarchy etc)
– Nucleon Decay
– Supernova burst physics & astrophysics
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INTRODUCTION TO DUNE 
§ The Deep Underground Neutrino Experiment (DUNE) is a future accelerator-

based multi-detector long-baseline neutrino oscillations experiment.

§ New neutrino beam at Fermilab,1300 km baseline 
§ Multiple technologies for the Near Detector (ND) at Fermilab
§ 70 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector at Sanford 

Underground Research Facility, South Dakota, 1.5 km underground 
– Will begin taking data in late 2020s
– Current effort is to demonstrate that technology works
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PROTODUNE SP AND DP AT CERN

§ Single-phase (SP) and dual-phase 
(DP) DUNE prototype LArTPCs at 
CERN

§ 770 t LAr mass each 
§ Exposed to H2 (DP) and H4 (SP) test 

beams at CERN, momentum 
dependent beam composition contains 
e, K± , μ ±,p , π±

§ Also collect cosmic ray data
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PROTODUNE-SP 
§ Active Volume: 6m (H) x 7m (L) x 2 x 3.6m (W) 
§ Central Cathode Plane Assembly (CPA) :

– 3.6 m drift distance @180 kV
– 500 V/cm field in drift volume 

§ Anode Plane Assembly (APA): 
– 3 APAs on each side 
– Each APA module: 6m high, 2.3m wide 

§ Cold electronics: directly attached to the top of the APA (2560 wires/APA, 15360 total wires) 
§ Photon detectors (PDS): 3 designs integrated into APA frame bars 
§ Cryogenic Instrumentations outside of field cage: measure argon purity, temperature, liquid level and tag 

cosmic rays 
§ First paper on ProtoDUNE-SP performance published: JINST 15 (2020) 12, P12004
§ ProtoDUNE-SP Phase-I operated Sept. 2018 – July 2020, Phase-II data taking under preparation
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HOW LARTPC WORKS

Neutrino 
interaction 
inside TPC
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HOW LARTPC WORKS

Secondary 
charged particles 
ionize atoms 
along their way
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HOW LARTPC WORKS

Electrons drift 
towards anode 
due to applied 
electric field
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HOW LARTPC WORKS

Electrons drift 
towards anode 
due to applied 
electric field
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HOW LARTPC WORKS

Electrons 
arrive at 
anode 
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HOW LARTPC WORKS

Anode has 3 
wire planes

First induction 
plane
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HOW LARTPC WORKS
First induction 
plane

Anode has 3 
wire planes
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HOW LARTPC WORKS

Second plane 
wires are 
perpendicular to 
first plane wires

Second 
induction 
plane
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HOW LARTPC WORKS

Second plane 
wires are 
perpendicular to 
first plane wires

Second 
induction 
plane

18

drift

02/23/2021A. Rafique



HOW LARTPC WORKS
Collection 
plane
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HOW LARTPC WORKS
Collection 
plane
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HOW LARTPC WORKS
Scintillation light is 
collected by PMTs 
that give absolute 
time for the 
interaction
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• The third dimension is 
obtained by combining 
timing information (t0) 
with drift velocity (vd) → 
hence is called “Time 
projection chamber”
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DUNE SENSITIVITY AND MEASURING DELTA-CP
§ CP violation measured as a difference of neutrino and anti-neutrino oscillation 

probabilities.

§ Calibrate Far and Near detector visible energy to 2% to control systematics at 
the level needed to support neutrino oscillation measurements 

§ Precision of energy reconstruction id required for 
– Early DUNE physics milestone is to reduce δCP uncertainty below 200 (at δCP = -900)
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ACCURATE RECONSTRUCTION OF VISIBLE 
ENERGY
§ Perform oscillation analysis 

– Reduce systematics in lepton and neutrino interaction measurements that are 
currently dominant systematics for the neutrino oscillation measurements 

§ Visible energy is obtained by leptonic + hadronic energy components 
– Goal is to achieve variation in visible energy to be <2% for DUNE sensitivity 

studies 
§ Working on leptonic part of the energy by:

– Serving as Electromagnetic Shower working group convener at ProtoDUNE
– Working on low-energy electron shower reconstruction 
– Developing calibration schemes for high energy electrons 

§ Hadronic energy component can be understood by neutrino oscillation 
measurements 
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LEPTONIC ENERGY MEASUREMENTS 



LOW-ENERGY ELECTRONS STUDIES 
§ DUNE goal is to measure CP-violation via νe

appearance (νμ à νe)
– To measure νe appearance we need to select 

electron showers in LAr TPC, and reconstruct their 
energy

§ Important to show that the detector can use the 
topological / calorimetric information provided by the 
TPC to identify a specific topology [Michel electrons]

§ Reconstruct the low-energy electrons and produce their 
visible energy spectrum

§ Ideal to study detector's response to electrons in the 
tens of MeV energy range 
– Useful for the search of low energy events e.g

supernova
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ACHIEVED RESULTS USING PROTODUNE-SP
§ Deliver selection and reconstruction framework to 

isolate muons and its Michel electrons to calibrate 
electron energy scale at DUNE Far Detector

§ Already developed selection, reconstruction, and 
energy calibration tools for ProtoDUNE-SP
– Achieved 95% event purity
– Variation in Michel electron energy energy is 

<2%
– Using “charge” deposition inside TPC only

§ Tech note is already out
§ Paper draft is ready to be circulated to the 

collaboration 
§ Will deliver Michel analysis algorithm to use on 

DUNE-FD Day 1
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RECONSTRUCTION OF LOW-ENERGY 
ELECTRONS
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ProtoDUNE

muon 
stopping 

point 

electron 
charge 
inside 

§ Defined a cone at the end point of the parent muon
§ All hits inside the cone are taken to be as candidate 

Michel hits based on simulation studies 
§ Selected, reconstructed and performed energy 

calibration for low energy electrons (Michels) in 
ProtoDUNE
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TRUE ENERGY SPECTRA
§ True Michel true Energy: by 

extracting energy directly from 
GEANT for the true Michel

§ True Michel reco hits true 
energy: by summing up the true 
energy of true Michel deposited 
on all reconstructed hits

§ True Michel reco hits reco
energy: by summing up the 
reconstructed energy of true 
Michel deposited on all 
reconstructed hits

Calculated in three different ways 
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UNDERSTANDING THE MISSING ENERGY

§ Investigated the source of missing energy 
due to hit reconstruction threshold
– We lose 11 MeV on average due to this 

threshold for Michel spectrum 
§ Compared energy resolution plots before and 

after the addition of the missing energy on 
event-by-event basis

§ Energy resolution:
– Before: δ(Ε)/E = 26% at 50 MeV 
– After: δ(Ε)/E = 18% at 50 MeV 

§ My plan is to work with BNL EDG to further 
investigate how the threshold could be 
optimized to improve sensitivity 

Hit reconstruction threshold ~ 100 keV/tick 
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BEAM ELECTRON RESOLUTION STUDIES 

§ Selected and reconstructed electron showers collected 
by ProtoDUNE-SP experiment from (0.3 – 7) GeV.

§ Compared two different charge integration methods
– Hit method: Utilized the hit information for charge 

collection 
– Wire method: One integrates the total charge in a 

reconstructed wire 
§ About ~15% of beam energy is missing 

– Hit reconstruction threshold effects could be the 
possible reason 

– Investigation is going on

Low à High energy electrons 
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INVOLVEMENT IN DUNE VERTICAL DRIFT FD
§ DUNE-US current project baseline: 2 Far 

detectors and Day 1 Near detector
– Second DUNE Far Detector likely to be known as 

Vertical Drift FD 

§ Goal of vertical drift: Combine positive 
features of SP and DP designs

– Excellent LAr purity and low noise electronics 
enable longer drift lengths with single-phase 
readout

– DP vertical drift architecture, with 3 x 3 m 
horizontal readout planes, made detector 
assembly much simpler

§ Plan to involve in the development of VD
– Could get involved in 3X3 m module integration 

at CERN cold box and subsequent DUNE VD-FD
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INVOLVEMENT IN DUNE VERTICAL DRIFT FD

§ Plan to work with BNL EDG on cold electronics to:
– Obtain the improved hit simulation and 

reconstruction thresholds
– Plan to investigate the impacts of further lowering 

the threshold 
– Important to perform the accurate energy 

reconstruction to enable DUNE’s oscillation 
physics program 

§ Experience with ProtoDUNE development and 
operations at CERN 
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HARDWARE AND DETECTOR 
OPERATION EXPERIENCE AT 
PROTODUNE 
§ Performed detector operation at CERN, Switzerland 

– Performed installation, operation and analysis of the 
data from ProtoDUNE photon detector readout and 
calibration systems 

– I served as photon detector lead at CERN 
§ Made significant contributions to timing studies for “First 

results from ProtoDUNE-SP” paper 
– Correlation of PDS and TPC timings

§ In future, we are starting to combine light + charge 
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LIGHT + CHARGE COMBINATION STUDIES 

§ Goal is to achieve variation in visible energy to be <2% 
for DUNE sensitivity studies 
– Already proved that we can reconstruct and 

calibrate electrons using TPC information only
– Now, I want to improve precision of lepton energy 

scale by using both TPC (charge) and PDS (light) 
measurements

§ Took a first look at Michels in PDS by matching timing 
between TPC and PDS in ProtoDUNE

§ My group started putting efforts for performing this 
study for beam electrons 
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HADRONIC ENERGY MEASUREMENTS 



HADRONIC ENERGY MEASUREMENTS 

§ Both leptonic and hadronic measurements are needed 
to extract the accurate visible energy spectrum 

§ Hadronic measurements are important for the 
understanding of neutrino interaction measurements 
– Important to reduce neutrino model systematics that 

are currently dominant systematics for the neutrino 
oscillation studies

§ Require to have an accurate estimate of the true 
neutrino energy scale in L Ar

§ Expertise in neutrino-argon interaction measurements 
using MicroBooNE experiment 
– I will incorporate into the DUNE oscillation study 
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Early physics goal (~3 years) of
3σ sensitivity to maximal CPV
can be reached with Day 1 ND





MicroBooNE Detector:
1. 85 tonnes of liquid argon Time Projection 

Chamber (LArTPC)
2. Average beam energy = 800 MeV
3. On the surface
4. 3 wire planes
5. Creates unprecedented resolution 

images of the neutrino events
6. Collecting neutrino data since Oct, 2015

MicroBooNE Physics Goals:
1. Knowledge of ν-Ar interactions 

in ~1 GeV range
2. Search for short baseline 

neutrino oscillations
3. Detector R&D for future large 

scale LArTPC detectors (e.g
DUNE)



CANDIDATE NEUTRINO EVENT DISPLAY
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WHY STUDY NEUTRINO-ARGON INTERACTIONS

§Limited data is available on ν-Ar scattering
§Neutrino oscillation studies rely on correct 

modelling of the neutrino cross-section 
measurements

§Additional challenge is the understanding 
of the nuclear effects 

§Great opportunity to use SBN 
measurements to inform DUNE oscillation 
studies 
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CHARGED CURRENT INTERACTIONS
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NUCLEAR EFFECTS
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CHARGED PARTICLE MULTIPLICITY 
MEASUREMENT 

§ Analysis Goal: Count the number of 
reconstructed charged particles exiting the 
target nuclei at the interaction point
○ Tagged μ±, π±, and p
○ Kinetic energy thresholds: 69 MeV for p

and 31 MeV for μ±/ π±

§ Selected candidate neutrino events 
– Used tools e.g sample generation, 

background rejection, event selection, 
reconstruction, and data analysis etc
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TESTS OF NEUTRINO INTERACTION MODELS 
USING MICROBOONE DETECTOR 
§ Produced also a large set of 

kinematic plots
§ Compared different neutrino 

models and plotted them against 
MicroBooNE data

§ Produced the first neutrino beam-
based result from MicroBooNE
collaboration

– https://news.fnal.gov/2018/05/microboone-
measures-charged-particle-multiplicity-in-first-
neutrino-beam-based-result/

§ Need similar studies for DUNE 
systematics measurements 
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ACCURATE RECONSTRUCTION OF TRUE 
NEUTRINO ENERGY
§ DUNE goal is to achieve variation in both true and 

visible energies to be <2%
– An accurate estimate of the true neutrino energy 

scale in L Ar relies on the measurement and 
modeling of neutrino interactions

– Visible energy needs to be translated to the true 
energy using a cross-section model and Monte 
Carlo simulation.

§ Plan to start working on SBN program and/or 
DUNE-ND
– Can utilize NUMI beam in MicroBooNE and 

ICARUS to study and evaluate neutrino model 
systematics before DUNE starts

45

Relevant cross-section (based on 
current GENIE): ND Spectrum

A. Friedland, 
A. Ankowski



MULTIPLICITY AND CROSS SECTION 
MEASUREMENTS USING DUNE-ND

§ Plan is to measure charge particle multiplicity that can 
lead to the inclusive cross section measurement using 
SBN
– My expertise from MicroBooNE will be utilized for 

event classification, simulation, and reconstruction
– Test the cross-section models by comparing 

simulated data to neutrino interaction data from the 
SBN

– Tune nuclear models to collected data with SBN
– Incorporate the systematics into oscillation analysis 

§ Collaboration with BNL High Energy theory and Nuclear 
Theory groups will be valuable to pursue this study 
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SUMMARY
§ I will focus on DUNE oscillation physics analysis 
§ Propose to work with BNL EDG group electronics readout and physics studies 
§ Interest and expertise in LArTPC operation, simulation, reconstruction and data 

analysis 
§ Extensive liquid argon software and hardware experience 

– Worked with all the LAr software tools for sample generation, reconstruction 
and analysis (MicroBooNE/ProtoDUNE/DUNE)

§ Currently I am serving as EM shower working group convener in ProtoDUNE
– Improving the leptonic energy scale for DUNE  

§ Focus on energy reconstruction with both leptons and hadrons
– Both are required for the accurate neutrino energy reconstruction
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THANK YOU FOR YOUR ATTENTION 



BACKUP SLIDES 
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GRANTS AND FUNDS 
§ Have experience on proposal writing and student mentoring from ANL 

– Presented at recent ANL DOE neutrino proposal review 
– Successfully recruited and mentored students 

§ Start-up package:
– One postdoc

• To perform the light and charge combination studies on ProtoDUNE
• Photon calibration system studies for DUNE
• To start on ND cross section analysis 
• Advance and complete DUNE-FD Michel analysis

– M&S: travel, lab space, set-up calibration module test stand 
§ Plan to apply in Early career award (DOE), Career award (NSF?), Comparative 

review FOA, Project funds 
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PROTODUNE-SP—TERTIARY CERN SPS BEAM

§ Tertiary CERN SPS Beam
– Beam coming from Super Proton Synchrotron 

§ CERN SPS Beam: 
– Protons from 400 GeV CERN SPS 
– Incident on Beryllium Target 
– Secondary Beam is 80 GeV 
– Incident on secondary target 
– 0.3-7 GeV H4-VLE Beam
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PHOTON DETECTOR CALIBRATION DATA 
ANALYSIS 
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DUNE-ND DESIGN 
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LOW-ENERGY ELECTRON STUDIES AT DUNE 
FAR DETECTOR 

§ Developing selection and reconstruction 
framework to isolate muons and its Michel 
electrons to calibrate electron energy scale at 
Far Detector (10 kt module).
– Achieved 80% event purity
– True Michel efficiency is 31%
– My plan is to deliver Michel analysis 

algorithm for use in Far Detector on day 
one
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DUNE CP- VIOLATION SENSITIVITY 
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RECONSTRUCTION OF LOW-ENERGY 
ELECTRONS
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UNDERSTANDING THE ENERGY LOSS
§ Investigated the source of missing energy

– Almost all missing energy is due to the hit reconstruction threshold.
§ Compared energy resolution plots before and after the addition of the missing 

energy per event
§ Energy resolution:

– Before: δ(Ε)/E = 26% at 50 MeV 
– After: δ(Ε)/E = 18% at 50 MeV 

§

hit reconstruction threshold ~ 100 keV/tick 
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NEUTRINO INTERACTIONS
Charged Current 

Interactions
Neutral Current 
Interactions

Gives information about neutrino 
flavor 

No information of neutrino 
flavor 
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HARDWARE AND DETECTOR OPERATION 
EXPERIENCE AT MICROBOONE

§ Event generation 
§ Event reconstruction performance 
§ Monte Carlo validation studies 
§ TPC noise studies 
§ Detector stability studies 

– My scripts are now a part of 
standard DQM tool in MicroBooNE

§ Cosmic ray tagger (CRT) system 
installation studies 
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Related to LAr
purity level

CRT 
system 

testing and 
installation



TPC NOISE STUDIES IN MICROBOONE

§ Investigated the ASIC saturation rate
– ASIC: application-specific 

integrated circuit 
– Plotted deadtime-weighted 

chirping channels per event by 
looking at the channels RMS 

– Found out the ASIC saturation rate 
changed when electronic work 
was performed. 
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PICKED OUT THE BEST NEUTRINO MODEL IN 
MICROBOONE 
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Found interesting 
features e.g a particular 
interaction behave in a 
certain way only (CCQE)
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integrated neutrino flux Number of targets 

Bin width

Constants 

effective detection 
efficiency

beam related MC background
# events in beam-on data # events in beam-off data



CROSS SECTION MEASUREMENTS 
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Relevant cross-section (based on 
current GENIE): ND Spectrum

A. Friedland, 
A. Ankowski

GENIE ”validated” with e-Ar scattering 
data: discrepancies of up to ~50%.



WORK PLAN FOR CROSS SECTION 
MEASUREMNT

§ Use ND to measure MEC contribution to the neutrino spectrum 
– Use BNL computing resources for simulation and AI/ML expertise could be 

used for neutrino event classification 
– Utilize expertise in event selection and energy reconstruction

§ Use BNL HET and NT group to tune nuclear models to collected data with ND
– Compare nuclear theory models to neutrino and electron-scattering data in 

similar kinematic regions
§ The corrections to neutrino cross-sections will be applied to both Near and Far 

detector data to reconstruct neutrino energy scale
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